Paper Title
Portable Device For The Detection Of Nitro- Xplosives Using Highly Advanced Microcontroller Based On Optical Properties Of Sensor’s Material

The aim of this study was to design a device for explosives detection. The study design is based on excited steady-state luminescence quenching registration. Sensor’s material luminescence intensity reduction occurs due to an interaction of explosives vapours contained in the air. The decrease rate of the luminescence intensity indicates the concentration of vapours. To study the luminescent properties of the sensor element, its luminescence spectra excited by photons with energies in the range 280 - 425 nm were measured. The excitation photoluminescence spectra for luminescence bands of the sensor element were also measured. Excitation source was light emitting diode (375 nm) and luminescent signal receiver was a photodiode (430 - 650 nm) in device designed. The device is operated under control of a program. The algorithm provides multiple operating modes (configuration, calibration, measurement etc.). Thus this device is referred to the class of devices with increased sensitivity to the explosives vapors. The advantages of device are autonomic power, small weight and sizes, simplicity of device operation for measurements.