International Journal of Advances in Science, Engineering and Technology(IJASEAT)
.
Follow Us On :
current issues
Volume-12,Issue-1  ( Jan, 2024 )
Past issues
  1. Volume-12,Issue-1  ( Jan, 2024 )
  2. Volume-11,Issue-4  ( Oct, 2023 )
  3. Volume-11,Issue-3  ( Jul, 2023 )
  4. Volume-11,Issue-2  ( Apr, 2023 )
  5. Volume-11,Issue-1  ( Jan, 2023 )
  6. Volume-10,Issue-4  ( Oct, 2022 )
  7. Volume-10,Issue-3  ( Jul, 2022 )
  8. Volume-10,Issue-2  ( Apr, 2022 )
  9. Volume-10,Issue-1  ( Jan, 2022 )
  10. Volume-9,Issue-4  ( Oct, 2021 )

Statistics report
Apr
Submitted Papers : 80
Accepted Papers : 10
Rejected Papers : 70
Acc. Perc : 12%
  Journal Paper


Paper Title :
Development of a Numerical Model for Cotton Textile Waste Pyrolysis

Author :Nimesha Parami Rathnayake, Samadhi Silva, Udari Perera, Shaluka Lakmal, Mahinsasa Narayana

Article Citation :Nimesha Parami Rathnayake ,Samadhi Silva ,Udari Perera ,Shaluka Lakmal ,Mahinsasa Narayana , (2018 ) " Development of a Numerical Model for Cotton Textile Waste Pyrolysis " , International Journal of Advances in Science, Engineering and Technology(IJASEAT) , pp. 60-63, Volume-6, Issue-4

Abstract : This paper focuses on developing a numerical model for pyrolysis of 100% cotton textile waste, which can be varied with temperature to find an optimum temperature in which the highest yield of combustible gases is produced. In developing the mathematical model in the present study, pyrolysis reaction was represented in one step global reaction. The stoichiometric coefficients are determined by experimental data obtained from proximate analysis of cotton textile waste. The cotton thread is assumed to be cylindrical in shape and the diameter of the thread is obtained through experiments. Computational fluid dynamic (CFD) simulations were used to solve the numerical model and obtain yield percentages at different temperatures. A Packed bed pyrolysis reactor in a nitrogen environment is considered in developing the numerical model. Heating rate and nitrogen flow rate are considered to be maintained at constant values to obtain the optimum temperature in slow pyrolysis to maximize the yield of combustible gases. Index Terms - Numerical Model, Mathematical Model, Optimum Temperature, Pyrolysis, Textile Cotton Waste.

Type : Research paper

Published : Volume-6, Issue-4


DOIONLINE NO - IJASEAT-IRAJ-DOIONLINE-13938   View Here

Copyright: © Institute of Research and Journals

| PDF |
Viewed - 60
| Published on 2018-12-26
   
   
IRAJ Other Journals
IJASEAT updates
Volume-11,Issue-4 (Oct,2023)
The Conference World

JOURNAL SUPPORTED BY